Master-Oszillator-Leistungsverstärker. Im Vergleich zu herkömmlichen Festkörper- und Gaslasern bieten Faserlaser folgende Vorteile: hohe Umwandlungseffizienz (Licht-zu-Licht-Umwandlungseffizienz über 60 %), niedrige Laserschwelle; einfache Struktur, Arbeitsmaterial ist flexibles Medium, einfach zu verwenden; hohe Strahlqualität (es ist leicht, sich der Beugungsgrenze zu nähern); Die Laserleistung verfügt über viele Spektrallinien und einen großen Abstimmbereich (455 ~ 3500 nm). geringe Größe, geringes Gewicht, gute Wärmeableitungswirkung und lange Lebensdauer.
Lasersensoren sind Sensoren, die zur Messung Lasertechnologie nutzen. Es besteht aus einem Laser, einem Laserdetektor und einer Messschaltung. Der Lasersensor ist ein neuartiges Messgerät. Seine Vorteile bestehen darin, dass berührungslose Fernmessungen, hohe Geschwindigkeit, hohe Präzision, große Reichweite, starke Anti-Licht- und elektrische Interferenzfähigkeit usw. realisiert werden können.
Im Vergleich zu herkömmlichen Technologien wurden die Vorteile von Faserlasern in Bezug auf Strahlqualität, Fokustiefe und dynamische Parameteranpassungsleistung voll erkannt. In Verbindung mit den Vorteilen der Effizienz der elektrooptischen Umwandlung, der Vielseitigkeit des Prozesses, der Zuverlässigkeit und der Kosten wurde der Anwendungsbereich von Faserlasern in der Herstellung medizinischer Geräte (insbesondere beim Feinschneiden und Mikroschweißen) kontinuierlich verbessert.
In der Mobilität vollzieht sich ein gewaltiger Sprung. Sei es im Automotive-Bereich, wo autonome Fahrlösungen entwickelt werden, oder in industriellen Anwendungen mit Robotik und Fahrerlosen Transportsystemen. Die verschiedenen Komponenten im Gesamtsystem müssen miteinander kooperieren und sich ergänzen. Das Hauptziel ist es, eine nahtlose 3D-Ansicht um das Fahrzeug herum zu erstellen, aus diesem Bild Objektentfernungen zu berechnen und mit Hilfe spezieller Algorithmen die nächste Bewegung des Fahrzeugs einzuleiten.
Der traditionelle Laser nutzt die thermische Akkumulation von Laserenergie, um das Material im aktiven Bereich zu schmelzen und sogar zu verflüchtigen. Dabei entstehen viele Späne, Mikrorisse und andere Bearbeitungsfehler, und je länger der Laser hält, desto größer ist die Schädigung des Materials. Der Ultrakurzpulslaser hat eine ultrakurze Interaktionszeit mit dem Material, und die Einzelpulsenergie ist superstark genug, um jedes Material zu ionisieren, eine Nicht-Heißschmelz-Kaltverarbeitung zu realisieren und die ultrafeine, niedrig- Schadensbearbeitungsvorteile, die mit Langpulslasern nicht zu vergleichen sind. Gleichzeitig haben Ultrakurzpulslaser bei der Materialauswahl eine breitere Anwendbarkeit, die auf Metalle, TBC-Beschichtungen, Verbundwerkstoffe usw. angewendet werden kann.
Im Vergleich zu herkömmlichen Autogen-, Plasma- und anderen Schneidverfahren hat das Laserschneiden die Vorteile einer schnellen Schnittgeschwindigkeit, eines schmalen Schlitzes, einer kleinen Wärmeeinflusszone, einer guten Vertikalität der Schlitzkante, einer glatten Schneidkante und vieler Arten von Materialien, die mit dem Laser geschnitten werden können . Die Laserschneidtechnologie ist in den Bereichen Automobile, Maschinen, Elektrizität, Hardware und Elektrogeräte weit verbreitet.
Copyright @ 2020 Shenzhen Box Optronics Technology Co., Ltd. - China Faser -Optikmodule, Faser -gekoppelte Laserhersteller, Laserkomponenten Lieferanten Alle Rechte vorbehalten.